New Secoiridoid Glucosides from Swertia japonica

by Masafumi Kikuchi, Rie Kakuda, Yasunori Yaoita, and Masao Kikuchi*

Department of Molecular Structural Analysis, Tohoku Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan

(phone: +81-22-234-4181; fax: +81-22-275-2013; e-mail: mkikuchi@tohoku-pharm.ac.jp)

Four new secoiridoid glucosides, swertiajaposides C-F(1-4, resp.), were isolated from the whole plant of *Swertia japonica* MAKINO together with two known compounds, 8-hydroxy-10-hydrosweroside (5) and senburiside IV (6). The structures of 1-4 were elucidated on the basis of spectroscopic, chemical, and physicochemical evidence.

Introduction. – The whole plants of *Swertia japonica* MAKINO (Gentianaceae) are the crude drug Swertia Herb, used as a stomachic or stimulant of appetite in Japan [1]. The constituents of this crude drug have previously been investigated and shown to contain secoiridoid glucosides [2–6], xanthones [7–10], flavonoids [11], biphenyl glucosides [12], triterpenoids [9][13], and 2,8-dioxabicyclo[3.3.1]nonanes [14]. In previous works we reported the structure determination of ten new secoiridoid glucosides [15][16], a new unsaturated alcohol glucoside [16], and a new lignan glucoside [16] from the whole plant of *S. japonica*. Here, we report the isolation and structure elucidation of four new secoiridoid glucosides, swertiajaposides C–F (1–4, resp.), together with two known compounds, 8-hydroxy-10-hydrosweroside (5) and senburiside IV (6), from the whole plant of *S. japonica*.

Results and Discussion. – The dried whole plants of *S. japonica* were extracted with MeOH. The MeOH extract was partitioned between H_2O and $CHCl_3$, H_2O and Et_2O , H_2O and AcOEt, and H_2O and BuOH. The BuOH-soluble fraction was subjected to column chromatography (silica gel and *Sephadex LH-20*) and preparative HPLC to afford two new compounds, named swertiajaposide C (1) and swertiajaposide F (4), and two known compounds, 8-hydroxy-10-hydrosweroside (5) and senburiside IV (6). The H_2O -soluble fraction was subjected to column chromatography (*Diaion HP-20* and silica gel) and preparative HPLC to afford two new compounds, named swertiajaposide E (3).

Swertiajaposide C (1) was obtained as an amorphous powder. The molecular formula of 1 was determined as $C_{17}H_{24}O_{10}$ based on the positive HR-FAB-MS (m/z 389.1442 ($[M + H]^+$, calc. 389.1447)). Acid hydrolysis of 1 gave D-glucose, which was identified by its retention time and optical rotation using chiral detection by HPLC analysis. The ¹H-NMR spectrum of 1 (in CD₃OD; *Table 1*) exhibited signals due to one Me group (δ (H) 1.97 (d, J = 7.3)), two CH₂ (one oxygenated), one MeO group (δ (H) 3.58 (s)), one oxygenated CH (δ (H) 5.38 (d, J = 1.2)) and one C=C-H moiety.

^{© 2008} Verlag Helvetica Chimica Acta AG, Zürich

Furthermore, one anomeric signal (δ (H) 4.83 (d, J = 7.8)) was recognized. The coupling constant of the anomeric signal indicated that the glucosyl linkage has β -configuration. The ¹³C-NMR spectrum of **1** (in CD₃OD; *Table 1*) showed signals due to one fully substituted C=C bond (δ (C) 119.7, 147.3) and one C=O group (δ (C) 165.7). The ¹H,¹H-COSY spectrum of **1** (*Fig. 1*) implied connectivities of CH₂(6) to CH₂(7)¹), and of H–C(8) to Me(10). The HMBC spectrum (*Fig. 1*) showed correlations between H–C(1) and C(5) and C(8), between H–C(3) and C(1), C(5), and C(11), between CH₂(6) and C(4), between CH₂(7) and C(11), between H–C(8) and C(5), between H–C(1') and C(1), and between MeO and C(3), respectively. With these correlations, the constitution of **1** could be deduced. The relative configuration of **1** was determined by NOESY experiments. The NOE cross-peaks observed between H_a–C(1) and H_a–C(3), and between the MeO group at C(3) and H–C(1') implied that the Glc moiety at C(1) and the MeO group at C(3) occurred on the same face (β) of the ring system (*Fig. 2*). The C(8)=C(9) bond was (*Z*)-configured, based on a NOESY cross-peak between H_a–C(1) and Me(10) (*Fig. 2*). From these data, the structure of **1** was

¹⁾ Arbitrary atom numbering, see Formula collection.

Position	$\delta(\mathrm{H})$	$\delta(C)$
1	6.22 (d, J = 0.7)	
3	5.38 (d, J = 1.2)	95.9
4		119.7
5		147.3
6	2.66 (<i>ddd</i> , $J = 17.3$, 4.4, 4.0, H_{β}), 2.76 (<i>dddd</i> , $J = 17.3$, 11.0, 5.6, 1.0, H_{α})	23.8
7	4.36 $(ddd, J = 11.2, 11.0, 4.4, H_{\beta}), 4.48 (ddd, J = 11.2, 5.6, 4.0, H_{\alpha})$	66.8
8	6.42 (q, J = 7.3)	136.9
9		130.6
10	1.97 (d, J = 7.3)	14.4
11		165.7
1′	4.83 (d, J = 7.8)	99.2
2′	3.20 (dd, J = 9.0, 7.8)	75.0
3′	3.45(t, J=9.0)	78.6
4′	a)	71.8
5'	3.37 - 3.41 (m)	78.0
6'	3.68 (dd, J = 11.7, 6.1), 3.92 (dd, J = 11.7, 2.2)	63.0
3-MeO	3.58(s)	58.2

Table 1. ¹*H*- and ¹³*C*-*NMR Spectral Data of* **1**. At 400/100 MHz, resp., in CD₃OD; δ in ppm, *J* in Hz.

OMe

elucidated as $(5Z,6S^*,8S^*)$ -5-ethylidene-6- $(\beta$ -D-glucopyranosyloxy)-4,5,6,8-tetrahydro-8-methoxy-1*H*,3*H*-pyrano[3,4-*c*]pyran-1-one, the absolute configuration of which remains to be established.

Swertiajaposides D (2) and E (3) gave the same molecular formula, $C_{16}H_{24}O_9$, by positive HR-FAB-MS (2, m/z 383.1293 ([M + Na]⁺, calc. 383.1318); 3, m/z 383.1288 ([M + Na]⁺, calc. 383.1318)). Acid hydrolysis of 2 and 3 each gave D-glucose, as described above for 1. Both compounds showed closely similar ¹H- and ¹³C-NMR spectral features (in CD₃OD; *Table 2*). In the ¹H-NMR spectrum, each compound exhibited signals due to one Me group, two CH (one oxygenated) and four CH₂ (three oxygenated). Furthermore, one anomeric signal (2, δ (H) 4.22 (d, J = 7.8); 3, δ (H) 4.26

ΗΟ

ΗÓ

OF

ÓН

Fig. 2. NOESY (full-line arrows) Correlations for 1

Position	2		3	
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
1	$3.78 (dd, J = 10.5, 4.4, H_a),$	67.6	$3.67 (dd, J = 10.0, 5.6, H_a),$	68.3
	$4.08 (dd, J = 10.5, 3.4, H_b)$		$4.26 (dd, J = 10.0, 5.9, H_b)$	
3	4.21 (br. $d, J = 15.9, H_{\beta}$),	63.7	4.28 (br. $d, J = 15.4, H_{\alpha}$),	65.6
	4.30 (br. $d, J = 15.9, H_a$)		4.38 (br. $d, J = 15.4, H_{\beta}$)	
4		125.1		124.4
5		153.5		155.1
6	$2.37 - 2.41 \ (m, H_{\beta}),$	26.9	$2.44-2.46 \ (m, H_{\beta}),$	28.8
	$2.78 - 2.86 (m, H_a)$		$2.79 - 2.85 (m, H_a)$	
7	4.37 (ddd , $J = 11.0, 10.5, 4.4, H_{\beta}$),	67.8	4.39–4.42 (<i>m</i> , 2 H)	67.9
	4.43 (ddd , $J = 11.0$, 5.4, 5.4, H_a)			
8	3.83 (qd, J = 6.3, 6.3)	71.8	3.79 (qd, J = 6.6, 2.9)	72.7
9	2.35 - 2.37 (m)	46.5	2.44 - 2.46 (m)	43.8
10	1.31 (d, J = 6.3)	19.3	1.30 (d, J = 6.6)	18.1
11		166.0		165.7
1′	4.22 (d, J = 7.8)	104.6	4.26 (d, J = 7.8)	102.0
2′	3.13 (dd, J = 9.0, 7.8)	74.9	3.15 (dd, J = 9.3, 7.8)	75.1
3'	a)	78.2	a)	78.1
4′	a)	71.7	a)	71.7
5'	a)	78.1	a)	78.1
6'	3.66 (dd, J = 11.7, 5.6),	62.8	3.65 (dd, J = 12.0, 5.6),	62.9
	3.87 (dd, J = 11.7, 1.5)		3.88 (dd, J = 12.0, 1.7)	

Table 2. ¹*H*- and ¹³*C*-*NMR Spectral Data of* **2** and **3**. At 400/100 MHz, resp., in CD₃OD; δ in ppm, *J* in Hz.

^a) Overlapped by the solvent signal.

(d, J = 7.8)) was recognized. The coupling constant of the anomeric signal indicated that the glucosyl linkage has β -configuration. In the ¹³C-NMR spectrum, each compound showed signals due to one fully substituted C=C bond (**2**, δ (C) 125.1, 153.5; **3**, δ (C) 124.4, 155.1) and one C=O group (**2**, δ (C) 166.0; **3**, δ (C) 165.7). The ¹H,¹H-COSY spectrum of **2** and **3** (*Fig. 3*) implied connectivities of CH₂(1) to H–C(9), of CH₂(6) to CH₂(7), of H–C(8) to H–C(9), and of H–C(8) to Me(10). The HMBC spectrum of **2** and **3** (*Fig. 3*) showed correlations between H–C(1) and C(5), between H–C(3) and C(5), between CH₂(6) and C(4), between CH₂(7) and C(11), between H–C(8) and C(3) and C(5), and between H–C(1') and C(1). From these data, the constitutional

Fig. 3. ¹H,¹H-COSY (bold line) and HMBC (full-line arrows) correlations for **2** and **3**

formulae of **2** and **3** could be deduced. The relative configuration of **2** and **3** was determined as follows. In the ¹H-NMR spectrum of **2**, H–C(8) has a large coupling constant ($J(8\beta,9\alpha) = 6.3$). In an NOE experiment, irradiation of H–C(8) enhanced the signals of H_b–C(1) (1.46%) and H_β–C(3) (3.94%), and irradiation of Me(10) enhanced the signal of H_b–C(1) (1.01%). These observations revealed that **2** takes a conformation as shown in *Fig.* 4, and Me(10) and the (β -D-glucopyranosyloxy)methyl group at C(9) were on the α - and β -faces of the ring system, respectively (*Fig.* 4). On the other hand, in the ¹H-NMR spectrum of **3**, H–C(8) has a small coupling constant ($J(8\alpha,9\alpha) = 2.9$). In an NOE experiment, irradiation of H–C(8) enhanced the signal of H_a–C(3) (7.83%), and irradiation of Me(10) enhanced the signals of H_a–C(1) (1.32%) and H_b–C(1) (2.31%). These observations revealed that **3** takes a conformation as shown in *Fig.* 5, and Me(10) and the (β -D-glucopyranosyloxy)methyl group at C(9) occurred on the same face (β) of the ring system (*Fig.* 5). Accordingly, the structures of **2** and **3** were assigned as (5*R**,6*R**)-5-[(β -D-glucopyranosyloxy)methyl]-4,5,6,8-tetrahydro-6-methyl-1*H*,3*H*-pyrano[3,4-c]pyran-1-one and (5*R**,6*S**)-5-[(β -D-glucopyranosyloxy)methyl-4,5,6,8-tetrahydro-6-methyl-1*H*,3*H*-pyrano[3,4-c]pyran-1-one and (5*R**,6*S**)-5-[(β -D-glucopyranosyloxy)methyl-4,5,6,8-tetrahydro-6-methyl-1

Fig. 4. Selected coupling constant (dotted arrows) and NOEs (full-line arrows) for 2

Fig. 5. Selected coupling constant (dotted arrows) and NOEs (full-line arrows) for **3**

syloxy)methyl]-4,5,6,8-tetrahydro-6-methyl-1H,3H-pyrano[3,4-c]pyran-1-one, respectively. The absolute configuration of **2** and **3** could not be determined yet.

Swertiajaposide F (4) was obtained as an amorphous powder. Acid hydrolysis of 4 gave D-glucose as described above. Compound 4 showed a very similar signal pattern to that of 2 in the ¹³C-NMR spectrum (in CD₃OD; *Table 3*). However, in contrast to 2, one more oxygenated CH signal was observed instead of a CH₂ signal. The molecular formula was determined as $C_{16}H_{24}O_{10}$ based on the positive HR-FAB-MS (m/z 377.1460 $([M + H]^+, \text{ calc. 377.1448})$. Consequently, 4 was deduced to be a compound in which a H-atom in **2** was replaced by an OH group. The resonance for C(6) at δ (C) 26.9 of **2** was shifted downfield to $\delta(C)$ 62.1 in 4, suggesting that an additional OH group was located at C(6). This was confirmed by the ¹H,¹H-COSY spectrum in which a crosspeak was observed between H-C(6) and $CH_2(7)$. The relative configuration of the OH group at C(6) was determined to be β from an NOE experiment, in which irradiation of $H_a - C(9)$ enhanced the signal of $H_a - C(6)$ (4.97%). The absolute configuration of 4 was determined as $(6R, 8R, 9R)^1$), based on the circular dichroism (CD) spectrum, in which a negative *Cotton* effect was observed at 231 nm ($\Delta \varepsilon = -7.20$) [17][18]. Accordingly, the structure of **4** was elucidated as (4R,5R,6R)-5-[$(\beta$ -D-glucopyranosyloxy)methyl]-4,5,6,8-tetrahydro-4-hydroxy-6-methyl-1H,3H-pyrano[3,4-c]pyran-1-one.

Position	$\delta(\mathrm{H})$	$\delta(C)$
1	3.87 (dd, J = 10.2, 5.4),	69.2
	4.07 (dd, J = 10.2, 3.9)	
3	4.17 $(dt, J = 16.6, 2.0, H_{\beta}),$	62.0
	4.38 $(dd, J = 16.6, 2.0, H_a)$	
4		126.3
5		152.3
6	4.46 - 4.49 (m)	62.1
7	4.32 $(dd, J = 11.5, 3.7, H_{\beta}), 4.50 (dd, J = 11.5, 3.7, H_{\alpha})$	72.9
8	3.97 (qd, J = 6.3, 6.3)	71.0
9	2.55 - 2.59(m)	42.9
10	1.30 (d, J = 6.3)	18.6
11		164.5
1′	4.26 (d, J = 7.8)	104.6
2'	3.15 (dd, J = 9.0, 7.8)	74.6
3'	a)	78.2
4'	a)	71.6
5'	a)	78.1
6′	3.66 (dd, J = 11.7, 5.4), 3.86 (dd, J = 11.7, 3.2)	62.8

Table 3. ¹*H*- and ¹³*C*-*NMR Spectral Data of* **4**. At 400/100 MHz, resp., in CD₃OD; δ in ppm, *J* in Hz.

The known compounds **5** and **6** were identified on the basis of their optical rotation values, NMR, and MS data as 8-hydroxy-10-hydrosweroside [19][20] and senburiside IV [21][22], respectively. This is the first report of compounds **5** and **6** from *S. japonica*.

We are grateful to Mr. S. Satoh and Mr. T. Matsuki for NMR and MS measurements.

Experimental Part

General. Column chromatography (CC): silica gel (SiO₂) (230–400 mesh; *Merck*), *Diaion HP-20* (250–300 µm; *Mitsubishi Chemical Corporation*), and *Sephadex LH-20* (18–111 µm; *GE Healthcare Bio-Sciences AB*). HPLC: *CCPM* pump (*Tosoh*), *RI-8020* refractive-index detector (*Tosoh*), *UV-8020* UV/VIS detector (*Tosoh*) and *JASCO* OR-2090 plus chiral detector. Optical rotations: *JASCO DIP-360* digital polarimeter. CD spectra: *JASCO J-720* spectropolarimeter; $\Delta \varepsilon$ in mdeg l mol⁻¹ cm⁻¹ (λ in nm). UV Spectra: *Beckman DU-64* spectrophotometer. IR Spectra: *Perkin-Elmer Spectrum-One-FT-IR* spectrometer. NMR Spectra: *JEOL JNM-LA 400* (¹H, 400 MHz; ¹³C, 100 MHz) spectrometer; chemical shifts δ in ppm, rel. to Me₄Si, *J* in Hz. FAB- and HR-FAB-MS: *JEOL JMS-DX 303* mass spectrometer; glycerol as matrix; in *m/z*.

Plant Material. The dried whole plants of *Swertia japonica* were purchased from *Uchida Wakanyaku Co. Ltd.*, Japan, in 2002. A voucher specimen (SJ-2002-01) was deposited at the Laboratory of Molecular Structural Analysis, Tohoku Pharmaceutical University.

Extraction and Isolation. The dried whole plants (including roots, stems, leaves and flowers) of *Swertia japonica* (2.0 kg) were extracted three times (14 d each time) with MeOH (61) at r.t. and filtered. The MeOH extract was concentrated under reduced pressure, and the residue (474 g) was suspended in H₂O (11). This suspension was extracted with CHCl₃ (3×11), Et₂O (3×11), AcOEt (3×11), and BuOH (3×11).

The BuOH-soluble fraction was concentrated under reduced pressure to afford a residue (12.0 g), which was subjected to CC (SiO₂, CHCl₃/MeOH/H₂O 30:10:1): 92 fractions according to TLC. *Fr.* 25, on prep. HPLC (*TSKgel ODS-120T* column (300 × 7.8 mm, 10 µm, *Tosoh*); MeOH/H₂O 1:3, 1.0 ml/min) gave **1** (2.6 mg, t_R 37.3 min). *Fr.* 42 on prep. HPLC (*Cosmosil 5C18AR* column (250 × 10 mm, 10 µm, *Nacalai Tesque*); MeOH/H₂O 1:8, 1.0 ml/min) gave **4** (10.5 mg, t_R 32.0 min) and **5** (3.5 mg, t_R 38.4 min). *Fr.* 55 was purified over *Sephadex LH-20* (MeOH/H₂O 1:1) to afford **6** (113.7 mg).

The H₂O-soluble fraction was passed through *Diaion HP-20* column, and the adsorbed material was eluted with H₂O and MeOH. The MeOH eluate fraction was concentrated under reduced pressure to afford a residue (20.8 g), which was subjected to CC (SiO₂, CHCl₃/MeOH/H₂O 30:10:1): 12 fractions according to TLC. *Fr. 3* was further purified on prep. HPLC (*Cosmosil 5SL* column (250 × 10 mm, 10 μ m, *Nacalai Tesque*); CH₂Cl₂/MeOH/H₂O 30:10:1, 1.0 ml/min) and gave **2** (10.4 mg, *t*_R 24.6 min) and **3** (26.1 mg, *t*_R 29.2 min).

Swertiajaposide C (=(5Z,6S*,8S*)-5-Ethylidene-6-(β -D-glucopyranosyloxy)-4,5,6,8-tetrahydro-8methoxy-IH,3H-pyrano[3,4-c]pyran-1-one; **1**). Amorphous powder. [α]_D²⁵ = -50.6 (c = 0.27, MeOH). UV (MeOH): 270 (4.3). IR (KBr): 3450, 1710. ¹H- and ¹³C-NMR: see *Table 1*. FAB-MS (pos.): 389 ([M + H]⁺). HR-FAB-MS (pos.): 389.1442 ([M + H]⁺, C₁₇H₂₅O₁₀⁺; calc. 389.1447).

Swertiajaposide $D = (5R^*, 6R^*) - 5 - [(\beta - D - Glucopyranosyloxy)methyl] - 4,5,6,8-tetrahydro-6-methyl-$ 1H,3H-pyrano[3,4-c]pyran-1-one;**2** $). Amorphous powder. <math>[\alpha]_D^{27} = +34.3 \ (c = 1.04, MeOH).$ UV (MeOH): 224 (3.9). IR (KBr): 3445, 1725. ¹H- and ¹³C-NMR: see *Table 2*. FAB-MS (pos.): 383 ($[M + Na]^+$). HR-FAB-MS (pos.): 383.1293 ($[M + Na]^+$, $C_{16}H_{24}NaO_9^+$; calc. 383.1318).

Swertiajaposide E (=(5R*,6S*)-5-[(β -D-Glucopyranosyloxy)methyl]-4,5,6,8-tetrahydro-6-methyl-1H,3H-pyrano[3,4-c]pyran-1-one; **3**). Amorphous powder. [α]₂₇²⁷ = +74.1 (c = 2.61, MeOH). UV (MeOH): 223 (3.9). IR (KBr): 3440, 1725. ¹H- and ¹³C-NMR: see *Table 2*. FAB-MS (pos.): 383 ([M+Na]⁺). HR-FAB-MS (pos.): 383.1288 ([M+Na]⁺, C₁₆H₂₄NaO₉⁺; calc. 383.1318).

Swertiajaposide F (=(4R,5R,6R)-5-[(β -D-Glucopyranosyloxy)methyl]-4,5,6,8-tetrahydro-4-hydroxy-6-methyl-1H,3H-pyrano[3,4-c]pyran-1-one; **4**). Amorphous powder. [α]_D²⁵ = -26.3 (c = 1.05, MeOH). CD (MeOH): +0.75 (262), -7.20 (231). UV (MeOH): 217 (4.0), 279 (2.8). IR (KBr): 3455, 1720. ¹H- and ¹³C-NMR: see *Table 3*. FAB-MS (pos.): 377 ([M+H]⁺). HR-FAB-MS (pos.): 377.1460 ([M+H]⁺, C₁₆H₂₅O₁₀; calc. 377.1448).

8-*Hydroxy-10-hydrosweroside* (=(4aS,5R,6S)-5-*Ethenyl-6-(β*-D-*glucopyranosyloxy)-4,4a,5,6-tetra-hydro-1*H,3H-*pyrano[3,4-c]pyran-1-one*; **5**). $[a]_{D}^{24} = -150.7$ (c = 0.35, MeOH). UV (MeOH): 243 (3.8). ¹H- and ¹³C-NMR: as reported [19]. FAB-MS (pos.): 377 ([M + H]⁺).

Senburiside IV (=3'''-O-Glucosylsenburiside II; (1S,4aS,6R,7R,7aS)-1,4a,5,6,7,7a-Hexahydro-1-(hexopyranosyloxy)-6-[(3-[/3-(/a-(/a-c))) (benzoyl) (benzoyl)

pyran-4-carboxylic Acid; **6**). $[a]_{D}^{25} = -80.5$ (c = 1.10, MeOH). ¹H- and ¹³C-NMR: as reported [21][22]. FAB-MS (pos.): 779 ($[M + H]^+$).

Acid Hydrolysis of 1–4 and Determination of the Absolute Configuration of the Sugar. Each of the compounds, 1-4 (ca. 0.3 mg), was refluxed with 5% HCl for 5 h. The reaction mixture was neutralized with Ag₂CO₃ and filtered. The soln. was concentrated *in vacuo* and dried to give a sugar fraction. The sugar fraction was analyzed by HPLC (Shodex SUGAR KS-801 column (300 × 8.0 mm, Showa Denko); H₂O, 1.0 ml/min, chiral detection): t_R 7.5 min (D-glucose, positive optical rotation).

REFERENCES

- 'The Japanese Pharmacopoeia Fifteenth Edition', Ed. Society of Japanese Pharmacopoeia, Jiho, Tokyo, 2006, p. 1233.
- [2] H. Inouye, Y. Nakamura, Tetrahedron Lett. 1966, 9, 4919.
- [3] H. Inouye, S. Ueda, Y. Nakamura, Tetrahedron Lett. 1966, 7, 5229.
- [4] Y. Ikeshiro, Y. Tomita, Planta Med. 1984, 50, 485.
- [5] Y. Ikeshiro, Y. Tomita, Planta Med. 1985, 51, 390.
- [6] Y. Ikeshiro, Y. Tomita, *Planta Med.* 1987, 53, 158.
- [7] T. Tomimori, M. Komatsu, Yakugaku Zasshi 1969, 89, 410.
- [8] I. Sakamoto, T. Tanaka, O. Tanaka, T. Tomimori, Chem. Pharm. Bull. 1982, 30, 4088.
- [9] P. Basnet, S. Kadota, M. Shimizu, T. Namba, *Planta Med.* 1994, 60, 507.
- [10] K. Hase, S. Kadota, P. Basnet, J. Li, S. Takamura, T. Namba, Chem. Pharm. Bull. 1997, 45, 567.
- [11] M. Komatsu, T. Tomimori, Y. Makiguchi, K. Asano, Yakugaku Zasshi 1968, 88, 832.
- [12] Y. Ikeshiro, T. Kubota, Y. Tomita, Planta Med. 1983, 47, 26.
- [13] Y. Tomita, J. Chem. Soc. Jpn. 1961, 82, 505.
- [14] T. Sakai, Y. Nakagawa, T. Iwashita, H. Naoki, T. Sakan, Bull. Chem. Soc. Jpn. 1983, 56, 3477.
- [15] M. Kikuchi, M. Kikuchi, Chem. Pharm. Bull. 2004, 52, 1210.
- [16] M. Kikuchi, M. Kikuchi, Chem. Pharm. Bull. 2005, 53, 48.
- [17] A. F. Beecham, Tetrahedron 1972, 28, 5543.
- [18] R. D. Burnett, D. N. Kirk, J. Chem. Soc., Perkin Trans. 1 1981, 1460.
- [19] R. X. Tan, L. D. Kong, H. X. Wei, Phytochemistry 1998, 47, 1223.
- [20] Y. Liang, J. Hu, H. Chen, T. Zhang, Y. Ito, J. Liq. Chrom. Rel. Technol. 2007, 30, 509.
- [21] S.-S. Wang, W.-J. Zhao, X.-W. Han, X.-M. Liang, Chem. Pharm. Bull. 2005, 53, 674.
- [22] M. Kitajima, N. Fujii, F. Yoshino, H. Sudo, K. Saito, N. Aimi, H. Takayama, *Chem. Pharm. Bull.* 2005, 53, 1355.

Received February 21, 2008